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VARIABLE GAIN FEEDBACK CONTROL
FOR LINEAR SAMPLED-DATA
SYSTEMS WITH BOUNDED
CONTROL"

K. Yosumwa!, Y. NisHIMURA? AND Y. YONEZAwA?

Abstract. A design method of a controller with a variable feedback gain is
presented for a linear sampled-data plant subject to a control constraint. The
performance index considered here is a quadratic function of the state. A set of the
steady state LQ optimal gains and their associated linear regions, i.e., the sets of
initial conditions such that the control via the gain satisfies the constraint, are
utilized to determine the control signal. The resulting control law is a state
feedback via the state-dependent piecewise constant feedback gain which becomes
progressively higher as the state approaches the equilibrium point. The closed loop
system is more effective than the steady state LQ optimal regulator which satisfies
the constraint. Calculations for obtaining the control signal are relatively simple as
compared with perfect optimal control.

It is also shown that the linear region can be described by a set of inequalities. A
few examples of simulation experiments are also presented.

Key Words—System design, variable gain, bounded control, quadratic cost.
1. Introduction

In physical systems, all variables are generally bounded. Since the control
variables are also constrained, there should be a limit to the response speed in a
real control system. As for the design problem of a control system subject to a
constraint on control input, there have been many works so far from various
points of view (Deley and Franklin, 1965; Frankena and Sivan, 1979; Gutman
and Hagander, 1985; Kalman, 1957; Kiendl, 1982; Kosut, 1983). A typical
approach to this problem is to find a control function minimizing a performance
index under constrained conditions. This approach usually leads to a two-point
boundary value problem which yields an open loop bang-bang solution. In usual
applications, however, such an optimal control scheme is not adopted due to its
complexity and expensiveness.

On the other hand, there is the Linear-Quadratic (LQ) optimal regulator
which minimizes a quadratic cost function of the system state and control under
no constraint. In this case, the optimal control law is a linear state feedback and
hence, relatively simple in its analysis and realization. The trade-off between
response speed and control amplitude can be made by suitably selecting the
weighting factors in the quadratic cost function. Because of the linearity of the
system, the control variable becomes small as the state approaches its equilib-
rium point (usually the origin). A more effective method of control is to maintain
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the control variable which is close to its maximal allowable value, Use of a
variable feedback gain enables us to design such a controller.

In the present paper, therefore, we have intended to develop a method for
designing a controller having a variable feedback gain for a linear sampled-data
plant under a constrained control condition, using the performance index
represented by a quadratic function of the state. The ideas introduced lie
especially in the following phases: (i) choosing a set of LQ optimal feedback
gains corresponding to a sequence of increasing weights on the state in the usual
quadratic cost function and, for each gain, finding the linear region, i.e., the set
of initial conditions such that the control via the gain is satisfactory for the
constraint, (i) at each sampling instant, applying the highest gain whose linear
region includes the current state. Such viewpoints imply that the state penalty
becomes progressively higher as the state approaches the origin; that is, a
lower-gain linear control is used far from the origin, while a higher-gain control
is used near it.

There will be discussions organized in Sec. 2.1 as preliminaries, Sec. 2.2
presenting the design algorithm, and Sec. 3 illustrating a few examples. The
theorems in Sec. 2.1 are only for the mathematical rigor of the proposed
technique.

2. The design of the controller

2.1 Preliminaries  The plant, the constraint and the performance index are
as follows; “

x(t+1) = Ax()+bu(t), t=0,1,--, (1)
lut)| =1, (2)
PI =2 x"(0Qx(5), Q = C'C, (3)

where x is the n-state vector, u the scalar control variable, 4 an (#X#)-
constant matrix, b an n-constant vector, and @ an (n X n)-positive semidefinite
matrix. The prime denotes the transpose. It is assumed that (A, b) is control-
lable and (C, A) observable.

First, consider the performance index PI achieved by the steady state LQ
optimal regulator and the set of initial conditions which satisfy the constraint (2).
The LQ optimal regulator is designed such that the following quadratic function
is minimized:

J = Z Lox' (DQx()+u(t?], 0>0. )
The resulting optimal control law is the state feedback expressed by
u(t) = —k'(0)x(1), (5)

where the feedback gain k(p) is obtained by solving the steady state Riccati
equation. The closed loop system is represented by

x(t+1) = A(p)x(1), (6)
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where

Alg) A A-bk' (o). 7
The performance index PI of the system (6) can be evaluated by

PI = x'(0)P(0)x(0), (8)

where the cost mafrix P(p) is the solution of the Lyapunov equation, i.e.,

P(o) = A'(0)P(0)A(0)+Q. (9)
The set of all initial conditions that satisfy the constraint (2) is defined by

T 4 {xo| [ u()] = [k (@A(@)x0 | <1, t=10,1,"}. (10)

The set I'(g) is called the linear region for the gain k(g). The relation (8) is true,
if and only if the initial condition x(0) belongs to I'(g). The performance index PI
is monotonically nonincreasing with the increasing weighting factor . More-
over, if there is the relation p;<g,, the following inequality,

P(gz) = P(py), an

holds. This fact seems to be natural and, in practice, the inequality (11) can be
easily seen. A proof is given in Appendix. By increasing o, however, the linear
region becomes narrow, because the norm of the feedback gain k(o) generally
Increases.

We proceed to present the design of the control system having a variable
feedback gain. As already mentioned above, there are the following ideas: A set
of LQ optimal feedback gains corresponding to different weighting factors in the
quadratic function J is chosen, and then, at each sampling instant, the highest
gain satisfying the constraint on the control variable is applied. Theorem 1
contains the fundamental rules for this scheme, Theorems 2 and 3 provide a
method for constructing the linear region, and algorithm suggests how to design
the controller.

Let o be a positive function of the sampling instant ¢,

0 = o()>0. (12)

The corresponding LQ optimal gain and the cost matrix are denoted by k(o(1))
and P(p(?)), respectively.

Theorem 1. If {o(#)} is a nondecreasing sequence, i.e.,
ot+1) 2 o(, t=0,1, -, (13)
the control law expressed by

u(t) = —k'(o(1)x(t) (14)
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gives a smaller PI as compared with the constant gain feedback,
u(t) = —k'((0))x(t). (15)
The constraint (2) is also satisfied, if (¢) is chosen so as to hold the condition,
(D) Er(o(t)). (16)
Proof.  The closed loop system given by (1) and (14) is expressed by
x(t+1) = A(o(1)x(8). (17)
It is easily seen that the performance index of the system (17) is evaluated by
PI = £ (00P(o(0)x(0) + 2 # (DIP(o(t)~ Plo(t-1)Jx(t).  (18)
Since o(#) is nondecreasing, from (11) and (18), the inequality
Pl = x"(0)P(0(0))x(0) (19)

holds. This proves the first half of the theorem. The latter half is obvious from
the definition of the set I'(¢). Besides, if the condition (16) is satisfied at each
sampling instant, the inequality (19) is true, and, therefore, the stability of the
system (17) is assured.

It is obvious that a constrained control cannot bring the state to the origin
from an arbitrary initial state, if the matrix A is unstable. In such an unstable
case, the linear region is also bounded for any >0, and the control law can be
applied only to the linear region.

Next, we consider the construction method of the linear region I'(p) defined
by (10). From the definition of I'(9), a state x is a member of I'(p), if the
inequality,

lu(t)| = | k' (0)A(0)x | <1 (20)
holds for arbitrary nonnegative integer ¢£. However, from Theorem 2, it can be

said that the condition x € I'(¢) can be confirmed by checking (20) for a finite set
of £, i.e., t = 0~j,, where the number j, is determined depending on the gain

k(g).
Define the following n-vectors,

) A A (@)'k(0), t=0,1, -, (21)
and the sets

LA (xo|lut)] = |2'(Ozxy | =1}, (22)

N®) élj)L(z). (23)

It is evident that S(j) is a monotonically nonincreasing set and its limit is I' (o).
Since L(#) is a set bounded by two parallel hypersurfaces, I'(p) is a polyhedral
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convex set. Let S(7) be the convex combination of +z(#) (¢ = 0~pn), te.,
SGY = Cla(t), t=0~j}
A{z|z= éoa(nz(:), éola(t) | <1}, (24)

where C{z(t), t=0~j} means the convex combination of *z(¢), t=0~j.
Since

S(j) = {x| |z'x| <1, z€S(},

SG) = {z] | x'z| =1, x€S()},
S(j) and S(;) are called the dual region of S(;) and §(j), respectively. The

region S(y) is also a monotonically nondecreasing set and the dual region of its
limit is I (@).

Theorem 2.  The linear region I'(¢) can be described by

I'(o) = S(54), (25)
where

jo = min{j | z(G+1) €S} (26)
Proof.  Operating A'(p) to "z€S(}) yields
A'(@)S(U) = C{z(t), t=1~(j+1)). (27)
Since there is also the relation,
SG+1) = C{z(t), t=0~G+1)), ~ (28)

SG+1)is represented by the convex combination of 3‘(]’) and A’ (Q):?(j). Thus,
if the relation A'(p)S(7)CS(j), i.e.,

2(j+1) €5()) (29)

holds, .§(j) arrives at its limit, and I'(o) can be expressed by (25). It has also
been shown by the above discussion that +z(¢) ({ = 0~j,) are the extreme
points of S(jo). That is, the set {z(¢)},=¢'° is necessary and sufficient to
describe I'(p).

In order to find j,, the condition (29) needs to be examined for each j. An

efficient method for examining (29) is presented in the following:
Define the (#X2(j+1))-matrix D by
D A4,z -, 226+l (30)
where
Z; =2(1—1) — z(j+1),
i1 = —2(i—1) — z(j+1), i =1~(+1).
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Theorem 3.  The following three statements are equivalent: _
1) The vector z(j+1) is not a member of S(j), i.e., 2(j+1) &S(j).
ii) The inequality #'D <0 (all the elements of £’ D are negative) holds for some
hER™.
iii) The linear equation Dy = 0, y €R?U*V, having the condition y=0 (all the
elements of y are nonnegative), has no solution except for y = 0.

Proof. Statement ii) means that there exists a hyperplane H which satisfies
the conditions z(j+1)€H and HNS(j) =@. Since S(j) is a convex set,
statement i) is equivalent to statement i). Assume that statement ii) holds, but
statement 1i1) does not; i.e., there exists a vector y=0 (y#0) that satisfies the
equation Dy = 0. Then, h’Dy+#0, since 'D<0 and y=0 (y#0). On the other
hand, there is the relation 2'Dy = 0, since Dy = 0. Accordingly, the assumption
is violated. Statement iii) indicates that the zero vector does not belong to the
convex combination of 2, ~Z2,;41). This implies statement i); i.e., statement ii).
Hence, statement iii) is equivalent to statement ii).

[t is easily seen that §t5atement iii) can be examined by solving the following:

Linear programing: Mirimize the function, i.e.,

f=c¢y ¢ =(1,1,-, 1) €R*Y, (31)

subject to the conditions,
Dy =0, (32)
y = 0. (33)

Considering (32) and (33), and the fact that all elements of ¢ are positive, the
optimal value of f, i.e., f*, is 0 or . If f/* = 0, statement iii) holds. If /* = oo,
statement iii) does not hold. Linear programing can be solved efficiently by the
well-known simplex method.

2.2 Design algorithm If the LQ optimal gain which corresponds to the
largest o(t), satisfying the condition (16), is applied at any sampling instant, the
control having the control variable which is close to its maximal allowable value
may be realized. Since an on-line search for the appropriate o(#) 1s difficult, a
simplified technique is proposed as follows:

Consider an increasing sequence of the weighting factors {9;};_o", i.e.,

0<0p<01< -+ <Py

As it is expected from (11) and (18) that a larger 9; makes the performance index
smaller, the largest §; that satisfies the condition (16) is to be chosen from the
sequence {9;};=o" at each sampling instant.

The weighting factor 9, should be determined so that the linear region I'(0g)
may contain all initial conditions of interest. As already mentioned, the linear
region cannot be unbounded, if the plant is unstable, and initial states which do
not belong to any linear region are out of consideration. The factor , should be
selected so that the region I'(9,) covers small disturbances or system noises.
The number N may be decided in consideration of the trade-off between the
computational efficiency and the performance index. A larger N gives smaller
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performance index, but takes more CPU time to calculate the control signal. The
factor 9; (1 = 1~(N—1)) is chosen, taking into account the size of the linear
region I'(9;). For instance, if the factors Q¢ and Q,, and the number N are
determined, there are factors such that the ratios of the norm between two
adjacent gains are constant, i.e.,

le@d /1o DIl = LI &) /R0 1T, i = 1~N.

Algorithm.  The algorithm is divided into off-line and on-line portions.
Off-line steps:

Step 1. Considering the above mentioned matters, determine the nubmer N,
the sequence {d;};=o" and the LQ optimal gain k(9;). The gain k() is obtained
by solving the Riccati equation, i.e.,

5) = —— L ATR(B)b, i = O~
k(@i)— 1+b1R(@,)bAR(Qz)b’ 1=0 N, (34)

where R(9;)>0 is the solution of the Riccati equation,

X = A'XA+9,Q A'Xbb'XA. (35)

o1
1+b'Xb

Step 2. Construct the linear region I'($;), i.e., calculate the vector,
z(1) = A" (p)R(D), T = 0~jo, i=0~N, (36)

where the number j,’ satisfies (26). These vectors are utilized to examine the
condition (16).

On-line steps:
Step3. Putv=0and {=0.

Step 4. Sample the state x(¢).
Step 5. Choose the largest number v according to
v =max{i|x(1)ELQ,), i=v~N}. (37)
The condition x(¢) €I'(9;) is true, if and only if the following inequality holds:
lz'(Dx() | <1, T =0~j," (38)
Step 6. Set up the control d(t) according to
u(t) = —k'(0,)x(1), (39)
put {= t+1, and return to Step 4.
While the on-line steps always provide a nondecreasing sequence of the
factor ¢, there are disturbances in real environments. Therefore, the on-line
steps need to allow the factor 9, to be reduced when a disturbance occurs. In

practice, we shall use the following equation in place of (37):

v = max{i | x() ET(§;), i= 0~N}. (40)
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3. Examples

We consider the following second order plant and performance index:

x(t+1) = [_2 ; ]x(t)+[$]u(t), (41)
PI =§Ux1(t)2. (42)

where x; denotes the first element of the state x. The eigenvalues of the matrix
A are both equal to one. Assume that the initial state x(0) is-a member of the
set,

Q =A{x| |x,|=1, |xz|=<1)}. (43)

Such a weighting factor as g¢;,=0.01 can be selected so as to hold the following
relation:

QCTI(py). (44)

An examination of the relation (44) can be replaced by checking whether the
extreme points of £, namely, the vectors (1,1)’ and (1, —1) belong to I'(9g).
Letting the factor ¢,— », the corresponding steady state LQ optimal regulator
becomes the minimal-time deadbeat regulator.

Consider the following three cases:

1) N= 1, @() = 0.01, @1—>CD,

2) N=2, 00=0.01, 9, =0.225, py—>w,

3) N=4, p=0.01, 9, =0.048, p,=0.225, 93 =1.64, py—>».

The ratio of the norm ||k(dn)||/||£(80)] is about (1.4)*, and §;(i = 1~N) is
determined such that the ratios of the norm between two adjacent gains are
about (1.4)_4, (1.4)? and 1.4, respectively. The LQ optimal gains £(9;) and the
number jo in Case 3) are shown in Table 1. As is obvious from Table 1, for

example, the condition x(t) €I'(9,) can be examined from the j,*+1(=2)
inequalities, i.e.,

Table 1. The LQ optimal gain k(g;) and the number j,' for Case 3)

g 0: k(o) jo
01001 (—0.3618, 0.4417)’ 5
1(0.048 (—0.4872, 0.6441)' 3
210.225 (—0.6292, 0.9181)’ 2
3 1
4 1

1.64 (—0.8121, 1.3672)"
e (=1.0 ,2.0 )
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|24 (0)x(8) | <1, |24’ (D)x()| =1,
exist, where
24(0) = k(04) = (=1,2)", 2z4(1) = A" (@2)k(04) = (0,~1)".

These inequalities are easily checked numerically.
The performance indices of the three cases with respect to the initial
condition, x(0) = (1,—-1)’, are

PI = 46.85, 29.62 and 16. 84,

respectively. It is evident that the performance index decreases as the number
N increases. Figure 1 shows the configurations of the linear regions of Case 3).
Figure 2 illustrates the trajectories obtained by applying the control of Case 3),
the control via the constant gain k(@) (PI=47.47) and the perfect optimal
control (PI =11.0), which also coincides with the time optimal control in this
case. The computational time for obtaining #(¢) depends mostly on the calcula-
tions for finding the number v; that is, it is dependent most of all on checking the
E, _o G+ 1) inequalities given by (38). In Case 3), the CPU time for each u(¢)
is about 0.2 sec. by using the BASIC program on a 16-bit personal computer (the
clock frequency of CPU is 5 MHz).

It should be noted that there are systems where some of the number j
become large; e.g., the case where the system matrix A(9;) has eigenvalues
close to the boundary of the unit circle. In such cases, as shown in Yoshida,
Nishimura and Yonezawa (1985), the number of inequalities can be reduced, if
the linear region is approximated by some polyhedral convex set. The computa-
tional time required for this control scheme can be considered to be intermedi-
ate between the linear control case and the optimal control one presented in

2
10t [(0.01)
I (0.048)

I (0.225)

r(1.64)
I (=)

10 20

Fig. 1. The linear regions of Case 3).
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—= the control of Case 3)
«—----= the control via the constant gain k(9¢)x;
«—-— the perfect optimal control X2

Fig. 2. The simulation results for x(0)=(1,—-1)".

Deley and Franklin (1965) and Kalman (1957).
4. Conclusions

A design method has been presented for synthesizing the controller having a
variable gain for a linear plant under a control constraint. A set of the LQ optimal
gains and their linear regions are utilized to determine the control signal which is
more effective than the steady state LQ optimal regulator subject to a similar
constraint on the control variable.

The proposed design algorithm is divided into the off-line steps and the
on-line ones. The former contains the determination of a sequence of increasing
weights in the quadratic cost function, calculations of the LQ optimal gains, and
the construction of their associated linear regions which are described by a set
of inequalities. The latter involves the algorithm for finding the highest gain that
satisfies the control constraint by using the linear regions. This can be made
mostly by evaluating the 2, _ ¢"(j,'+ 1) inequalities represented by |z'x|<1,
while the trade-off between the computational time and the performance index
can be done by selecting the number N.
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Appendix: Proof of the inequality (11)
The LQ optimal gain k(p) is given by
1 [
k(o) —mz‘l R(0)b, (A.1)
where R(g)>0 satisfies the Riccati equation,

R(o) = A'R(@Q)A+0Q- A'R(0)bb'R(0)A. (A.2)

1
T¥6R(0)b

Differentiating both sides of (A.2) with respect to ¢ and taking (7) and (A.1) into
account, we obtain

dR(Q) A dR(Q) 2

“do A’ (o) do A(p)+Q. (A.3)
It can be seen from (9) and (A.3) that the relation,

dR(o) _

—do " P(g), (A.4)
holds. From (A.1) and (A.4), there is also the relation,

dk(p) _ 1 . Y

do = TrrRGs AP@b-b'P(o)bk(e). (A.5)

Substituting the relation (A.4) and-(A.3), differentiating both sides of (A.3) with
respect to ¢ and taking (A.5) into account, we obtain

dP(Q) Y W dP(Q)A _ 2 ’ ’
b_dg = A (Q)—dgﬁl“l(Q) W(A P(o)b—b"P(p)bk(0))

X(A'P(@)b—b'P(0)bk(p))’ .
(A.6)

Equation (A.6) is also the Lyapunov equation. Since /l(g) is stable and the

Slflécond term of the right-hand side of (A.6) is a negative semidefinite matrix,
then

dP (o)
% <0. (A.7)

This implies the inequality (11).



