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Abstract: The mechanical energy of a pendulum
whose pivot can move horizontally can be controlled
according to signs of the pivot acceleration values. A
servo design technique is proposed which can control
the pivot acceleration considering a limited travel of the
pivot. This control law is applied to the swing-up con-
trol problem for an inverted pendulum.

Swinging up an inverted pendulum is an old and chal-
lenging problem in the field of nonlinear control study.
An inverted pendulum, a cart and pendulum system,
has a structure where the pendulum is hinged to the
cart via a pivot and only the cart is actuated. The mo-
tion of the pendulum has to be controlled by moving the
cart back and forth within a limited travel of the cart.

There have been many studies on this subject. The
method using a feed-forward bang-bang control pro-
posed in [1] is very sensitive to modeling error, noise, and
disturbance and is not a reliable technique. The bang-
bang control law with pseudo-state feedback developed
in [2] was successfully demonstrated on a rotating-arm
inverted pendulum system without a rail length restric-
tion. It is not suitable for controlling a cart and pen-
dulum system in which the rail length is finite. The
energy-based methods developed in (3], [4], and [5] have
the same design philosophy as the technique proposed
in this note. However, the relationship between the en-
ergy control and the design of the servo system is not
clear and the limitation of the cart travels is not consid-
ered in these methods. The sliding mode control method
presented in [6] does not take into account a limited
cart travel either. An algorithm for swing-up control
demonstration is developed in [7] using a linear saturat-
ing feedback law with destabilizing gains, which works
successfully within a limited cart travel. However, it has
no theoretical backgrounds and requires a rule of trial
and error to obtain a good controller.

In this note a new approach to swing-up control is pro-
posed based on an energy control method. That is, not-
ing that the energy of the pendulum can be controlled
according to the sign condition of the cart acceleration,
we develop a method for controlling the cart acceler-

ation under a limited travel of the cart. The design
procedure of the controller that controls the energy of
the pendulum is quite simple, which mainly consists of
constructing a servo system having a low-pass property
and using a sinusoidal reference input generated from
the pendulum trajectory. When the pendulum is close
to the inverted vertical, a full-state feedback controller
takes over the control and stabilizes the whole system.
Some results of an experimental investigation are shown
to demonstrate the cffectiveness of the proposed control
law.

2 MATHEMATICAL MODEL

The mathematical model of the cart and pendulum
system depicted in Fig.1 is described by -
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3 DESIGN METHOD

3.1 Energy control method

Fig.1 A cart and pendulum system




The mechanical energy of the pendulum and its time
derivative are as follows:

V= %mlzé2 + mgl(1 — cos ), (3)

V = mié cos 67. (4)

It is seen from equation (4) that V can be increased
or decreased by changing the sign of # in accordance
with that of fcosf. If sgn() = sgn(fcosf) (resp.
sgn(7) = —sgn(fcosh)), then V > 0 (resp. V < 0).
Since the travel of the cart is finite, ¥ has to be con-
trolled in consideration of the constraint on r. The ba-
sic idea of the design method lies in constructing a servo
system having a sinusoidal reference input, which is ob-
tained from (8, 8), and generating + satisfying the sign
condition in order to control V to a prescribed value.

Let r4 be the reference input of the servo system for
r, which will be given later. Using r4, we put

ur = (M +msin® 0){fi(ra — ) — for}
+mg cos @sin 8 + mlf? sin 6. (5)

Here f; and f, are given by
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so that the transfer function from r4 to r is represented
by
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where ¢ and ¢ are the design parameters. Let g(w) and
#(w) be the gain and the phase lag of G(jw), respec-
tively.

Figure 2 shows a stabilized trajectory of the pendu-
lum in the 8 — é/wn plane. This coordinate system was
chosen so that small free oscillations of the pendulum
approximate circles. Without loss of generality, we as-
sume that the angular displacement # is represented in
the range [—=, 7). Asshown in Fig.2, we define the angle
©(t) using the trajectory of the pendulum. We see that
¢(t) is a monotone increasing function of time ¢. Now
consider the function being — sin ¢(¢) and note that this
function has the same sign as 6 cos§ when | 8 |[< 7/2. In
fact, we can utilize this function to construct a reference
input for the servo system.

The reference input ry is given by

a
T4(t) = ——=sin{e(t) — 7 + P(wy))- 8
()= s sin(p(t) =7 + 9(w,) ®)
The paramcter a determines the amplitude and sign of
r¢. How to design a will be shown below. It is seen from
simnulations that when | a | is small in comparison with
{, p(t) can be approximated as

P(t) = wyt + o. (9)

Fig.2 The 0 - 8w, plane

The parameter w), is a function of the amplitude of 6.
When the amplitude is small, w, is nearly equal to w,,,
and w;, becomes smaller as the amplitude of # becomes
larger. It should be noted that r4 is not a perfect sinu-
soidal function because p(t) is not an exact linear func-
tion of ¢. Therefore, r4 has higher harmonics in addition
to the fundamental component of frequency w],. These
higher harmonics would disturb the sign condition of
7. However, when ¢y is given large to some extent, the
servo system works as a low-pass filter and the higher
harmonics are diminished. Then, when the servo system
comes to the steady state, we have
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where sin(-) means the fundamental component of sin(-).
We can see from equation (10) that a has to be chosen
so that the amplitude of r satisfies the constraint, and
from equation (11) that when ¢(w,) =~ ¢(w’,), # and
sin(ip(¢)) are in phase, i.e., the sign condition of 7 is also
satisfied. It can be seen from simulations that # and
f cos # have mostly the same sign when | 8 |< 7/2. As
far as the sign of V is concerned, V < 0 (resp. V > 0)
when a > 0 (resp. @ < 0). In order to make V converge

to the reference energy, say Vy, the parameter a is given
by

if |V -Vy|>b
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where ag > 0 and by > 0 are the design parameters.
We see that ag relates to the amplitude of 7. Actually
ao is chosen smaller than the desired amplitude because
9(wr) > g(wn). According to (12), the amplitude of
is decreased as V approaches V. The parameter b is a
number that determines the time when the amplitude of
ais decreased. The time is delayed more if a smaller by is




given. These parameters are determined by performing
“simulations.

In case of the swing-up control, V, is equal to the
potential energy of the pendulum at the upward vertical
position, i.e.,

Va = 2mgl. (13)

Although 6 enters the region of n/2 <| 8 |< 7 during
the swing-up control, where the sign condition of # is not
satisfied, the control law stated above can be used for
the swing-up control since | V' | is small in this region.
The proposed energy control law is given by equations
(5),(8),and (12). As for the parameters ¢ and cp, from
simulations we have the following as a criterion:

(=0.7~15,cg=05~2 (14)

Actually, these parameters are to be tuned by consid-
ering the specifications of the servo system, such as the
limitation of the motor torque.
3.2 Stabilizing control near the upward equilib-
rium point

Since the pair (9,6") that makes V = Vj is not unique,
the upward equilibrium point cannot be stabilized with
the energy control. Thus we should switch the control
law to a linear one when (6, 6) approaches the equilib-
rium point, i.e., (£, 0). We use the following conditions
as a criterion for switching:

|V —Vil<e, 1+cosf < e, (15)

where €; and e, are small, positive constants, which are
determined by simulations so that the switch is done
smoothly. The stabilizing control law is designed by
applying the LQ methods to the model linearized at the
upward equilibrium point, i.e.,

(r,7,6,8) = (0,0,,0). (16)
4 EXPERIMENTAL RESULTS

The transfer function from u, to 7 (both represented
in volts), the equivalent length of the pendulum, and the
design parameters are as follows:

1.21

G6) = Sax033)

1 =0.227m, (17)

(=12 ¢ =09, ag = 0.8[V], bp = 0.833.  (18)

Figure 3 shows the results of the experiments, where the
pendulum is swung up from the pendant position to the
upright one. It is seen that the energy is controlled as
keeping the amplitude of the cart small.

5 CONCLUSIONS

An approach to the swing-up problem of an inverted
pendulum has been developed using a technique that can
control the energy of the pendulum, and some results of
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Fig.3 The results of experiments

experiments are given which shows the effectiveness of
the proposed control law.

The present design technique was also used in [8] to
find a stabilizing control law for a crane system having
a restricted travel.
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